

# **VENTAJAS COMPETITIVAS**



# Generador de Vapor Clayton vs Caldera Convencional



## **Dimensiones**

Clayton ocupa solo la tercera parte de lo necesario para instalar una caldera de tubos de humo.

#### Peso

El equipo, en operación, pesa aproximadamente, la cuarta parte y no requiere bases de cimentación para instalarlo.

#### Rapidez

Produce vapor a plena capacidad en aproximadamente 5 minutos de su arranque en frío.

## Eficiencia

Su sistema de tiro forzado y de circulación a contraflujo de los gases de combustión, aunado a mínimas pérdidas de radiación, permiten alcanzar eficiencia del 83% a plena capacidad.

# Eficiencia Promedio

Operando a medio fuego la eficiencia aumenta un 2% debido al control preciso en la circulación de los gases de combustión.

# Perdidas por Radiación

El compacto diseño de Clayton refleja pérdidas por radiación inferiores al 0.75%

#### Purga

El fluido que se elimina periódicamente para el control de los sólidos es solo un 4% lo cual permite importantes ahorros de agua, químicos y combustible.

#### Economía de Combustible

Rapidez en el arranque y circulación de agua a contraflujo de los gases de combustión incrementa la eficiencia vaporcombustible.

# **Dimensiones**

Requiere tres veces más espacio que un Generador Clayton de igual capacidad.

#### Peso

Pesa aproximadamente cuatro veces más que un Generador Clayton de capacidad similar.

# Rapidez

Requiere de una a dos horas aproximadamente para alcanzar una presión de trabajo desde su arranque en frío.

#### **Eficiencia**

Transferencia de calor por convexión natural, altas temperaturas de chimenea y grandes pérdidas por radiación permiten alcanzar un 79% de eficiencia a plena capacidad.

## Eficiencia Promedio

Operando a capacidad media, su eficiencia va descendiendo dramáticamente hasta más del 70%.

# Perdidas por Radiación

La gran superficie de su envolvente alcanza pérdidas de radiación entre 1.5 al 3% que afectan su eficiencia

#### Purga

Su gran almacenamiento de agua, requiere eliminar hasta 40% que significa más consumo de agua, químico combustible.

## Economía de Combustible

Alimentación de agua por convexión y largos períodos precalentamiento impactan el consumo de combustible.

# Generador de Vapor Clayton vs Caldera Convencional

## Impacto Ambiental

Su alto grado de eficiencia permite conservarlo con facilidad dentro de las normas oficiales para descargas atmosféricas.

## Flexibilidad de Operación

Se puede apagar durante lapsos de inactividad y arrancar de inmediato cuando se requiere vapor.

## Choque Térmico

El diseño de Generador de Vapor no tiene ese riesgo.

## **Portabilidad**

Sus dimensiones y peso permiten montar el sistema completo de vapor en un camión y transportarlo al punto preciso de consumo.

#### Facilidad de Instalación

Su diseño compacto permite un fácil acceso por puertas tipo industrial, se puede instalar en pisos, sótano o azotea.

# Seguridad, Inmueble y Personal

Requiere de un mínimo almacenamiento de agua, por lo que no entraña riesgo de explosión de vapor.

## Prima de Seguros

Primas más reducidas dado su característica de in explosividad por vapor o riesgo de daños terceros.

# Presión de Trabajo

Avanzados dispositivos electrónicos balancean el suministro agua-vapor asegurando su recuperación inmediata, cargas variables o repentinas de vapor.

# Calidad de Vapor

Separador ciclónico garantiza vapor seco saturado con menos del 0.05% de humedad. Elimina el arrastre de humedad y aprovecha al máximo el calor del combustible

#### Detección de Incrustación

Método rutinario comparando las presiones de agua y vapor.

# Cambio de Fluxes

Se requieren unas ocho horas para cambio y aislamiento total de la unidad de calentamiento.

#### Operador del Equipo

Basta un curso para capacitar en operación y mantenimiento, no requiere vigilancia constante.

#### Servicio y Refacciones

Servicio especializado y existencia constante de refacciones aseguran atención inmediata en México y Latinoamérica.

## **Impacto Ambiental**

Su menor eficiencia significa mayor pérdida de calor del combustible descargado por la chimenea y por tanto mayor impacto ambiental.

## Flexibilidad de Operación

Debe permanecer encendida todo el tiempo pues se tarda mucho en levantar presión de trabajo.

## Choque Térmico

Muy alta vulnerabilidad al choque térmico.

#### **Portabilidad**

No cubren esta característica pues requieren de una plataforma de "trailer" para poder montar la caldera y algunos accesorios.

#### Facilidad de Instalación

Requiere de una gran área para instalación y cuando menos, similar espacio para mantenimiento.

# Seguridad, Inmueble y Personal

Enorme almacenamiento de agua con un potencial de explosión igual a varios kilogramos de dinamita.

# Prima de Seguros

Basadas en el alto riesgo de explosión por vapor que afecta instalaciones, personal y construcciones.

# Presión de Trabajo

Debido a que deben calentar una gran masa de agua, su recuperación durante cargas variables es lenta con altas variaciones de presión.

# Calidad de Vapor

Descarga vapor con un contenido del 3% de humedad arrasando sólidos al servicio. Esto ocasiona pérdida de calor e incrementa el consumo de combustible.

# Detección de Incrustación

No hay método ni rutina.

## Cambio de Fluxes

Normalmente lleva 15 días o más la reparación o cambio de fluxes.

## Operador del Equipo

Debe estar a cargo de personal especializado y requiere de constante vigilancia.

# Servicio y Refacciones

En su mayoría no cuentan con un área formal de servicio. Poca disponibilidad de refacciones genuinas.